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Abstract

The transient nature and complex flow geometries of two-phase gas–liquid flows cause fundamental

difficulties when measuring flow velocity using an electromagnetic flowmeter. Recently, a current-sensing

flowmeter was introduced to obtain measurements with high temporal resolution. In this study, current-
sensing flowmeter theory was applied to measure the fast velocity transients in slug flows. To do this, the

velocity fields of axisymmetric gas–liquid slug flow in a vertical pipe were obtained using volume-of-fluid

(VOF) method and the virtual potential distributions for the electrodes of finite size were also computed

using the finite volume method for the simulated slug flow. The output signal prediction for slug flow was

carried out from the velocity and virtual potential (or weight function) fields. The flowmeter was numer-

ically calibrated to obtain the cross-sectional liquid mean velocity at an electrode plane from the predicted

output signal. Two calibration parameters are required for this procedure: a flow pattern coefficient and a

localization parameter. The flow pattern coefficient was defined by the ratio of the liquid resistance between
the electrodes for two-phase flow with respect to that for single-phase flow, and the localization parameter

was introduced to avoid errors in the flowmeter readings caused by liquid acceleration or deceleration

around the electrodes. These parameters were also calculated from the computed velocity and virtual

potential fields. The results can be used to obtain the liquid mean velocity from the slug flow signal

measured by a current-sensing flowmeter.
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1. Introduction

Electromagnetic flowmeters have been successfully applied to measure single-phase liquid mean
velocities in various industries. There have also been continuous efforts made to measure the
characteristics of two-phase flow using electromagnetic flowmeters, since such meters do not
introduce a pressure drop and can provide a fast response to changes in the flow. Thus, there are
many potential applications for electromagnetic flowmeters in two-phase flow.

The theory behind the voltage-sensing flowmeter was first developed by Shercliff (1954). The
weight function, which represents the degree of the contribution of the fluid velocity to the signal
in the cross-section of a conduit, was proposed and computed for single-phase flow. Bevir (1970)
developed the weight vector W ¼ B� j, which is an extension of the weight function to three-
dimensions using the concept of a virtual current j. Using the virtual current method, O’Sullivan
and Wyatt (1983) derived rectilinear weight functions for various numbers, sizes, and shapes of
electrodes for rectilinear flows. Wyatt (1986) analytically calculated a rectilinear weight function
as a series solution for annular flow as well as single-phase flow. Zhang (1997) investigated the
effect of the phase distribution on the rectilinear weight function in a two-dimensional annular
domain with or without eccentricity, and proposed a new rectilinear weight function as a series
solution. The estimated error of his series solution truncated up to a finite order increased as the
film thickness of the annular flow decreased. Since the normalized film thickness of annular flow
in practical situations is less than 0.1, a higher-order series solution was required to obtain an
accurate solution. Zhang (1998) numerically studied the effect of a bubble on the virtual current of
an electromagnetic flowmeter with the bubble located at various positions along the pipe axis. A
two-dimensional assumption was used and the virtual potential was expressed in terms of a series.
The effect of bubble size was also considered. The change of the virtual current caused by the
existence of the bubble was represented using deviation and asymmetry. However, the calculation
error increased to 24% as the bubble size normalized with the distance between electrodes in-
creased to 0.9. Lim and Chung (1998) also used the weight function method, but in addition, they
numerically solved the flowmeter equation using a finite volume method on the given velocity
field. Their study was aimed at comparing the calculation accuracy of each method, which they
determined strongly depended on the grid system.

There exist four regular flow patterns in two-phase flow in a vertical pipe; these can often be
categorized phenomenologically into bubbly, slug, churn, and annular flows. To measure the li-
quid mean velocity (cross-sectional average) with an electromagnetic flowmeter, each flow pattern
must be considered separately because of their different flow characteristics. Since bubbly flow can
be approximated as a homogeneous mixture of gas and liquid at the same velocity, there are no
additional measurement difficulties for this type of flow compared to single-phase flow. Cha et al.
(2002) and Knoll (1991) reported that this approximation gives rise to no more than a 5% error in
the liquid flow rate when the void fraction is less than 0.25. Annular flow measurements are also
similar to those of single-phase flow if the film is assumed to be uniform and smooth, and the gas
core is located at the center of the flow tube.

Of the regular two-phase flow patterns, slug flow is the most complicated, as the liquid axial
velocity over a slug unit experiences considerable acceleration or deceleration. If one considers a
cross-section of slug flow, it is composed of an annular flow when a Taylor bubble is passing by,
and a bubbly flow when a liquid slug occupies the cross-section. Mi (1998) separated the time
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series of the void fraction and liquid velocity into the two parts (annular and bubbly), and applied
the appropriate theory to each. The decomposition greatly simplified the problem, but resulted in
prediction error, as the velocity field of the slug flow violates the fully developed and rectilinear
velocity field assumptions. In particular, the error became significant when the tail of a slug
bubble passed by an electrode because of the strong deceleration in this region. This could be the
main source of the 15% error reported by Mi (1998) in the liquid flow rate.

Slug flow measurements made with an electromagnetic flowmeter require a high temporal
resolution because of the rapidly changing velocities. However, voltage-sensing flowmeters are
vulnerable to noise due to power leakage (Tsiknakis, 1988). This error increases at the high-fre-
quency excitation rate that is required for high temporal resolution measurements. Recently, a
current-sensing flowmeter was introduced that inherently achieved a high temporal resolution
(Ahn et al., 2003a). A simplified calibration process associated with the flow pattern coefficient, f ,
was also proposed. The output predictions, weight functions, and functional form of the flow
pattern coefficients were obtained using three-dimensional virtual potential distribution compu-
tations in annular flow geometries (including single-phase flow).

To predict the output for a given velocity profile and to acquire the velocity information from the
output, previous research has focused on the weight vector W ¼ B� j (3D), the rectilinear weight
function (2D), and the axisymmetric weight function (1D). As will be discussed in detail in the next
section, it is very useful to calculate the three-dimensional virtual potential distribution, G, instead
of the weight vector (or function). The weight vector (or function) can easily be obtained by taking
the gradient of the virtual potential. Also, the impedance between electrodes that is required to
obtain the flow-induced emf from the output of the current-sensing flowmeter is equal to the dif-
ference between the virtual potentials, DG, at two electrodes if the contact impedances between the
liquid and the electrodes can be neglected. Furthermore, knowledge of the virtual potential dis-
tribution enables us to investigate the effect of an arbitrary velocity field on the flowmeter output,
which means that the previous theory of electromagnetic flowmeters is not restricted to rectilinear,
axisymmetric, and fully developed flow fields. For example, an electromagnetic flowmeter can
measure a liquid’s velocity subject to considerable acceleration and deceleration in a two-phase slug
flow. In addition, the three-dimensional virtual potential distribution is important to obtain the
localization parameter, v, and the flow pattern coefficient, f , which will be introduced in the next
section. The localization parameter gives the local mean velocity of a developing flow from an
electromagnetic flowmeter reading. The flow pattern coefficient has been proposed to simplify the
calibration process for two-phase flows, and is defined by the ratio of the liquid resistance between
electrodes for the two-phase flow with respect to that for a single-phase flow (Ahn et al., 2003a).

Signal prediction and calibration are major concerns when using current-sensing electromag-
netic flowmeters for slug flow measurements. In this study, therefore, the three-dimensional vir-
tual potential and velocity distributions were numerically computed for slug flows, and then used
to obtain the localization parameters and flow pattern coefficients, as well as the weight functions.
2. Electromagnetic flowmeter theory

In voltage-sensing flowmeters (see Fig. 1(a)), there are unpredictable stray currents (i1 and i2)
that are caused by power leakage flows through the double layers between the electrodes and the
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Fig. 1. A voltage-sensing flowmeter versus a current-sensing flowmeter (Ahn et al., 2003a). (a) Voltage-sensing flow-

meter, (b) current-sensing flowmeter.
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liquid to the ground in the liquid because of the signal conditioner, which has a very high input
impedance. These currents produce unpredictable voltages at terminals A and F due to the
contact impedance of the layer and the resistance of the liquid. Since the impedances along the
two stray current paths, i1 and i2, are not symmetric to each other, the two voltages at terminals A
and F cannot be nullified by common-mode rejection; the remaining portion of the voltage be-
comes the power leakage noise. (Note that the resistances of the liquid between points C or D and
the ground vary with respect to the two-phase flow configurations in the conduit.) The noise
voltage is much larger than the flow-induced emf. The stray current problem becomes more
serious as the excitation frequency increases, since the capacitive coupling between the signal and
power circuits becomes stronger and a higher voltage is required across the coil if the same magnet
current (or magnet field strength) is to be provided. However, high frequency excitation is re-
quired to obtain a high temporal resolution.

On the other hand, current-sensing flowmeters (see Fig. 1(b)) use a signal conditioner with very
low input impedance (Yu et al., 1997) to measure the current from flow-induced emf. The
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unpredictable stray currents (i1 and i2), caused by the power leakage, flow to the signal condi-
tioner, not the fluid. They become noise currents mixed with the signal current, i3, from the flow-
induced emf. The stray currents are not dependent on the contact impedance or the liquid
resistance, but rather on the capacitive and resistive coupling between the signal and power cir-
cuits. This leaves more room for canceling the two opposite currents i1 and i2 than with the
voltage-sensing flowmeter. If appropriate shielding is provided around the electromagnet wind-
ings and signal wires, the noise currents can mostly be cancelled out, despite the high-frequency
excitation. Another important point about current-sensing flowmeters is the relevance of the
signal current i3 to the contact impedance and liquid resistance in a conduit. To predict the signal
current i3 from the flow-induced emf, the impedances along the paths of the signal current i3 must
be evaluated. The liquid resistance is related to the liquid conductivity (sensitive to temperature)
and configuration of the two-phase flow. As the liquid conductivity and flow configuration in a
two-phase flow vary with time, the signal current i3 changes. The signal current i3 is affected by the
contact impedances of the double layers (or by the impedance between the liquid and the elec-
trodes). The contact impedance is very sensitive to the electrode material and the electrochemical
properties of the liquid. In the field of electrochemistry, there has been extensive discussion of this
problem (Glasstone, 1942; Macdonald, 1987).

In short, current-sensing flowmeters are immune to the noise caused by power leakages, and
guarantee the ability to measure the signal current, i3, caused by the flow-induced emf. However,
to predict the liquid velocity from the signal current is complicated, because the impedances along
the paths of i3 must be evaluated.

For conventional voltage-sensing flowmeters, the potential distribution U inside a flow tube is
described by the Poisson equation (Shercliff, 1962; Bevir, 1970). The potential difference DU
between two electrodes can be represented by
DU � ð1AÞ ¼
Z Z

s

Z
v �Wds; ð1Þ
where v is the velocity vector, s is the volume, and W ¼ B� j is the weight vector, which is the
cross-product of the magnetic flux density B and the virtual current density j. Note that the
dimensions on both sides of Eq. (1) are volts times amperes [VA], not volts [V], since the unit
virtual current, which is represented by (1A) on the left-hand side of the equation, can be omitted
usually. Evaluating the potential difference from Eq. (1) needs a virtual problem: obtaining the
distribution of the virtual current density j in the stationary flow with a unit current flowing
through the electrodes at the boundary. Thus, j depends on the shape of the electrode, electrical
conditions on the flowmeter wall, and flow configurations (for a two-phase flow). When the in-
duced magnetic field is small and the conductivity is uniform (if not stated explicitly, this shall be
assumed), r� B ¼ 0 and r� j ¼ 0. There exist corresponding harmonic potentials, H and G,
associated with B and j, respectively; these are B ¼ rH , j ¼ rG.

For several restricted flow fields in an annulus, the volume integral in Eq. (1) reduces to
Z Z
s

Z
v �Wds ¼

Z 2p

0

Z R

Ri

W ðr; hÞvzðr; hÞrdrdh; ð2Þ
for rectilinear and fully developed flow fields, and
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Z Z
s

Z
v �Wds ¼ 2p

Z R

Ri

W 0ðrÞvzðrÞrdr; ð3Þ
for rectilinear, axisymmetric, and fully developed flow fields. Here, W ðr; hÞ is the rectilinear weight
function, W 0ðrÞ is the axisymmetric weight function, R is the pipe inner radius, and Ri is the radius
of the gas core (Ri ¼ 0 for single-phase flow). The weight functions are given by
W ðr; hÞ ¼
Z 1

�1
Wz dz ð4Þ
and
W 0ðrÞ ¼ 1

2p

Z 2p

0

W ðr; hÞdh; ð5Þ
where Wz ¼ Bjy for a uniform transverse magnetic field B. It can easily be shown using the mean
value theorem for the harmonic function (Wyatt, 1986) that, for a uniform transverse magnetic
field and point-electrode,
W 0ðrÞ ¼ const ¼ 2B � ð1AÞ
pRð1� eÞ ; ð6Þ
where e is the void fraction (e ¼ 0 for single-phase flow). Therefore,
Z Z
s

Z
v �Wds ¼ 2B � ð1AÞ

pRð1� eÞQL ¼ 2BvmR � ð1AÞ: ð7Þ
Here, QL is the liquid volumetric flowrate and vm is the liquid (cross-sectional) mean velocity.
Even though Eq. (7) was derived for two-phase annular or single-phase liquid flows, it also holds
for two-phase bubbly flows, which can be considered homogeneous gas–liquid mixtures with the
same velocity.

Electromagnetic flowmeter theory has been applied mainly to rectilinear, axisymmetric, and
fully developed flow fields. This does not describe two-phase flows in general. For example, the
liquid velocity field along a slug unit experiences considerable acceleration and deceleration in slug
flow (Mi et al., 2001).

For a rapidly accelerated and decelerated flow with an axisymmetric velocity field and geom-
etry, such as a slug flow, the volume integral in Eq. (1) reduces to
Z Z

s

Z
v �Wds ¼ 2p

Z Z
½vrðr; zÞWrðr; zÞ þ vzðr; zÞWzðr; zÞ�rdrdz �

2BvmR � ð1AÞ
v

: ð8Þ
Here, v is a localization parameter, vrðr; zÞ and vzðr; zÞ are the r- and z-components of the velocity
vector v, respectively, Wrðr; zÞ is the radial weight function, and Wzðr; zÞ is the axial weight func-
tion. The weight functions are defined by
Wrðr; zÞ ¼
1

2p

Z 2p

0

Wrðr; h; zÞdh ¼ � B
2p

Z 2p

0

sin h
oG
oz

dh ð9Þ
and



D.H. Kang et al. / International Journal of Multiphase Flow 30 (2004) 585–614 591
Wzðr; zÞ ¼
1

2p

Z 2p

0

Wzðr; h; zÞdh ¼ B
2p

Z 2p

0

oG
oy

dh ð10Þ
for a uniform transverse magnetic field B. Here, G denotes the virtual potential; its gradient is the
virtual current j ¼ rG. An electromagnetic flowmeter gives the volume-averaged value of the
velocity, not the local value at the electrodes. Therefore, a localization parameter v is required to
obtain the local liquid mean velocity from the flowmeter output. This parameter is related to the
flow configuration and the velocity profile. In general, the radial velocity, vrðr; zÞ in Eq. (8) is
negligible in a liquid film compared to the axial velocity, vzðr; zÞ. In addition, the radial weight
function tends to be localized near the pipe wall in the wake zone (this will be shown in Section
3.2.2) and the radial velocity is negligible near the wall. Therefore, the axial velocity contribution
dominates the target signal (see Fig. 15 and Section 3.2.2).

The same virtual problem that was introduced for voltage-sensing flowmeters is also useful for
current-sensing flowmeters. The current output, i can be described without the contact imped-
ances in the double layers by
i ¼
R R

s

R
v �Wds

DG
; ð11Þ
where DG is the virtual potential difference between finite-sized electrodes with small cross-sec-
tional areas, and is equivalent to the fluid resistance between the electrodes. In comparison with
voltage-sensing meters, both have the same volume integral,

R R
s

R
v �Wds, and W is related to

the gradient of the virtual potential G. The calculation of the virtual potential G is very useful for
both types of flowmeter, as G is related to the effect of arbitrary velocity fields on the flowmeter
output. When the transverse magnetic field is uniform and finite-sized electrodes are used, Eq. (11)
gives
iSP ¼ 2BvmSPR � ð1AÞ
DGSP

ð12Þ
for single-phase liquid flow, and
iTP ¼ 2BvmTPR � ð1AÞ
vDGTP

ð13Þ
for two-phase flow (v ¼ 1 for bubbly and annular flow, v 6¼ 1 for slug flow). Here, vm is liquid
mean velocity, and the subscripts SP and TP denote single- and two-phase flows, respectively.
Hence, iTP can be rewritten using Eqs. (12) and (13), see Ahn et al. (2003a), as
iTP ¼ iSP
vmSP

1

f
vmTP

v
; ð14Þ
where f is the flow pattern coefficient, which was defined previously, and is related only to the
flow configuration. Therefore, the calculation of the three-dimensional virtual potential distri-
bution G also gives the flow pattern coefficient f for current-sensing flowmeters. The output of
current-sensing flowmeters is dependent on the liquid resistance, DGTP, between the electrodes,
neglecting the contact impedance in the double layer. The liquid resistance is related to the liquid
conductivity (sensitive to temperature) and the flow configuration. By introducing the flow pat-
tern coefficient f and using a calibration chart for single-phase flow (that includes the effects of
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temperature and fluid species), one can separate the dependency of the output on the flow con-
figuration from the liquid conductivity.

In practical applications to slug flows, a single-phase flow calibration chart, the functional
forms of the flow pattern coefficient f , and the localization parameters v are required. The single-
phase flow calibration chart from the manufacturer gives the iSP

vmSP
term in Eq. (14). The slug flow

configurations can easily be measured using at most two impedance meters (the void fraction of
the film thickness, void propagation speed, and bubble length can be obtained). If the functional
form of f with respect to the flow configuration is obtained numerically or experimentally in
advance (for example, by using impedance spectroscopy), the measured flow configurations give
the value of f . The localization parameter v can also be evaluated by computing the flow field and
the virtual potential distribution for a given flow geometry. Therefore, the current output iTP can
be used to obtain an actual liquid mean velocity for slug flow.

The liquid mean velocity from the flowmeter output can be rewritten for both voltage- and
current-sensing flowmeters as (see Eq. (8))
vm;TPjz¼Electrode ¼ v
Z

½�vrðzÞqðzÞ þ �vzðzÞpðzÞ�dz; ð15Þ
where
pðzÞ �
Z

pWzðr; zÞ
BR � ð1AÞ rdr; ð16Þ

qðzÞ �
Z

pWrðr; zÞ
BR � ð1AÞ rdr; ð17Þ

�vzðzÞ �
1

pðzÞ

Z
vzðr; zÞ

pWzðr; zÞ
BR � ð1AÞ rdr; ð18Þ

�vrðzÞ �
1

qðzÞ

Z
vrðr; zÞ

pWrðr; zÞ
BR � ð1AÞ rdr: ð19Þ
Here, vmTPjz¼Electrode denotes the liquid mean velocity on the electrode plane, pðzÞ is an axial weight
density function because its integral with respect to z is unity from the mean-value theorem of the
harmonic function, qðzÞ is a radially integrated radial weight function, �vzðzÞ is the radially
weighted axial velocity, and �vrðzÞ is the radially weighted radial velocity.
3. Numerical analysis

To obtain the flow pattern coefficient f and the localization parameter v, we performed
numerical simulations of the two-dimensional axisymmetric slug flow in a vertical pipe, and
computed the three-dimensional virtual potential distributions for a rising slug flow.
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3.1. Numerical simulation of slug flow

3.1.1. Numerical method
The simulation of a Taylor bubble rising in a 25.4-mm diameter vertical pipe was performed

using the volume-of-fluid (VOF) model that is implemented in the CFD-ACE+ code (CFD Re-
search Corporation, Version 2002.2.24). The bubble passed through a stagnant liquid with a
density equal to 1000 kg/m3 and was subject to gravitational acceleration of 9.8 m/s2. The com-
putational domain and initial bubble shape are shown in Fig. 2. The effective domain in the axial
direction, which influences the electromagnetic flowmeter output, was previously reported to be a
distance within ±2 times of a pipe radius of R from the electrode location (Ahn et al., 2003a).
Hereafter, the region around the electrode will be called the effective flowmeter window because it
covers most of the weighting area (see Section 3.2.2). In this study, therefore, two slug bubble
lengths were considered: one that was longer than 4R and one that was shorter than 4R. The
longer bubble was initially 5.6R, and the shorter bubble was initially 2.0R. These grew to 6.1R and
2.9R, respectively. The computational domain was 40R, which was sufficient to obtain the quasi-
steady Taylor bubble shape and the rising velocity. An axisymmetric cylindrical coordinate sys-
tem, ðr; zÞ, was used in the analysis.

The transient two-dimensional Navier–Stokes equations and the continuity equation for an
incompressible fluid are given by
ovr
ot

þ vr
ovr
or

þ vz
ovr
oz

¼ � 1

q
op
or

þ l
q

o2vr
or2

�
þ 1

r
ovr
or

þ o2vr
oz2

� vr
r2

�
; ð20Þ

ovz
ot

þ vr
ovz
or

þ vz
ovz
oz

¼ � 1

q
op
oz

þ l
q

o2vz
or2

�
þ 1

r
ovz
or

þ o2vz
oz2

�
þ g; ð21Þ

ovr
or

þ ovz
oz

þ vr
r
¼ 0: ð22Þ
R

40R 

Air 
Bubble

r
z 0.8R

2R  (short bubble) 

5.6R  (long bubble) 

0.92R

Fig. 2. Computational domain and initial bubble shape.



594 D.H. Kang et al. / International Journal of Multiphase Flow 30 (2004) 585–614
In these equations, vr and vz are the radial and axial components of the velocity, respectively, t is
time, q is the density, g is the acceleration due to gravity, r and z are the radial and axial coor-
dinates, and p is the pressure. These equations were solved with appropriate boundary conditions:
an axisymmetric condition at r ¼ 0, and a no-slip condition along all solid boundaries. The
governing equations were discretized using a finite volume method (Patankar, 1980) on a non-
uniform cylindrical mesh. A first-order upwind scheme was applied to interpolate the cell-face
values in the convective terms. The liquid was initially quiescent and the flow was simulated in a
frame of stationary coordinate systems.

The position of the moving gas–liquid interface in the solution domain was defined by the
fraction volume of liquid fluid F (Hirt and Nichols, 1981), which was determined by solving a
transport equation,
oF
ot

þ vr
r
oðrF Þ
or

þ vz
oF
oz

¼ 0: ð23Þ
To capture the sophisticated dynamics of the interface, piecewise linear interface reconstruction
(PLIC, Kothe et al., 1996) was used. In this work, the net normal force due to the surface tension
was given by Yang et al. (1998),
FS ¼
Z

rn� dx; ð24Þ
where r is the surface tension between the two fluids (in this study, assumed constant at 0.0725 N/
m), x gives the edges of the interfaces within the individual computational cells, and n is the unit
normal of the interface, given by
n ¼ rF : ð25Þ
The net normal force in Eq. (24) was used as a body force in the momentum equations, Eqs. (20)
and (21). Since an explicit technique was used to discretize the transport equation, Eq. (23), the
CFL (Courant–Friedrichs and Lewy) condition must be satisfied when selecting a time step. In
this work, the time step varied over the run matrix, but 10�5 s was a typical value.

The semi-implicit method for pressure-linked equations (SIMPLEC, van Doormaal et al., 1984)
was adopted for the velocity–pressure coupling, and the resultant non-symmetrical system arising
from the momentum equation was solved using the conjugate gradient squared (CGS) method
with incomplete Cholesky preconditioning (Saad, 1996). The resulting symmetric system due to
the pressure correction was solved using algebraic multigrid (AMG) techniques (Lonsdale, 1993).
The convergence criterion for each time step stated that the residuals for each variable must be
reduced at least by a given criterion (10�4 in the present computations).

The grid dependence was investigated using three grid sizes: 67· 988, 45· 656, and 57· 1750 in
the radial and axial directions, respectively. The maximum change in the bubble rising speed
obtained using these grids was less than 1.5%. However, the grid size affected the extent of the
non-physical small trailing bubbles that were computed in the wake of the Taylor bubble. DeJesus
(1997) reported that PLIC VOF methods tend to introduce small non-physical void or fluid
remnants when the flow has substantial vorticity, such as in the wake zone of a Taylor bubble.
Therefore, the results reported in this study were obtained using the largest grid with 57· 1750
grid points, which revealed the smallest number of satellite bubbles. The normalized mesh size in
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the z-direction, Dz� ¼ Dz=R, was uniform at 0.0225. The normalized mesh size in the r-direction
was non-uniform, expanding in size, with Dr� ¼ Dr=R ranging from 0.0131 near the pipe wall to
0.0188 near the pipe axisymmetric axis.

3.1.2. Numerical results and comparison with experiments
Although many researchers have investigated the structure of gas–liquid slug flow in a vertical

pipe, few film velocity measurements have been reported in the literature. This is because these
measurements are difficult to perform because the liquid film is very thin (on the order of one
millimeter) and can be easily disturbed, thus altering the flow field. To the authors’ knowledge,
only two sets of experimental results of liquid film velocity measurements are available. DeJesus
et al. (1995) presented the first measurements of velocity profiles in the liquid phase surrounding a
single Taylor bubble rising through a stagnant liquid in a vertical pipe, using photochromic dye
activation and image analysis. Polonsky et al. (1999) measured the liquid film velocity field around
a Taylor bubble rising through stagnant and moving liquid in a vertical pipe using a PIV (particle
image velocimetry) technique, and reported the averaged liquid film velocity. There are some
slight deviations between the two sets of data.

Kawaji et al. (1996) used the VOF method to predict the shape of a bubble rising in stagnant
liquid in a vertical pipe 25.6 mm in diameter. They compared these predictions with their own
measurements. The predicted and measured bubble shapes were in good agreement with the
potential flow solution obtained by Dumitrescu (1943). Bugg et al. (1998) used the VOF method
to predict the Taylor bubble shape and terminal rise velocity. Their predictions spanned a wide
range of E€otv€os ðEoÞ and Morton numbers ðMoÞ: 10 < Eo ¼ qLgD

2

r < 100 and 10�12 <

Mo ¼ gg4
L

qLr3
< 10. In these groups D is the pipe diameter, and gL is the dynamic viscosity of the

liquid. Anglart (2001) solved the transient, three-dimensional Navier–Stokes equations, both
inside and outside a moving Taylor bubble, using the CFX4.2 code, and predicted the bubble
shape, bubble speed, and pressure and velocity distributions, as well as the wall shear stress. Using
these results, proper closure relationships for the interfacial forces and a new model for bubble-
induced turbulence in slug flows have been proposed for two-fluid slug flow models.

Fig. 3 shows an example of the calculated long bubble shape evolution for Eo ¼ 87,
Mo ¼ 1:4� 10�11, and Froude number Fr ¼ 0:317. The simulated bubble shape was obtained by
contouring the F ¼ 0:5 values. The evolution of the interfacial shape up to t ¼ 2:43 s did not
progress in a smooth fashion. Due to the interaction with vortices, a force was imparted on the
base of the Taylor bubble which, by t ¼ 0:401 s, resulted in a physically unrealistically large gas
skirt and liquid cavity (DeJesus, 1997). However, thereafter the computation revealed a stable
interface shape, except for the lower part of the Taylor bubble, which had not yet developed
significantly. White and Beardmore (1962) stated that an inertia-controlled regime is realized, in
which the bubbles have flat or concave bottoms, if the dimensionless inverse viscosity,
Nf ¼ ðEo3=MoÞ1=4 > 550. Bugg et al. (1998) proposed a clearer criterion, Frð¼ UTB=

ffiffiffiffiffiffi
gD

p
Þ > 0:3. In

this group UTB is the Taylor bubble rise velocity. In the current study, both criteria were satisfied
(Nf ¼ 14; 766 and Fr ¼ 0:317); therefore, the present results showed the same trend for the bubble
trailing edge as described by Bugg et al. (1998). In the present study, the Taylor bubble shape and
velocity field at t ¼ 2:43 s were deemed to be quasi-steady results, and were used to assess and
calibrate the flowmeter output for slug flow. Hereafter, any reference to the Taylor bubble implies
the conditions that existed at t ¼ 2:43 s.



Fig. 3. Evolution of a long Taylor bubble shape for Eo ¼ 87, Mo ¼ 1:4� 10�11 and Fr ¼ 0:317: (a) t ¼ 0:11 s; (b)

t ¼ 0:25 s; (c) t ¼ 0:401 s; (d) t ¼ 0:54 s; (e) t ¼ 0:69 s; (f) t ¼ 0:84 s; (g) t ¼ 1:01 s; (h) t ¼ 1:184 s; (i) t ¼ 1:34 s; (j)

t ¼ 1:51 s; (k) t ¼ 1:65 s; (l) t ¼ 1:81 s; (m) t ¼ 1:99 s; (n) t ¼ 2:16 s; (o) t ¼ 2:30 s; (p) t ¼ 2:43 s.
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Fig. 4 shows the variation of the film thickness, d, with the distance from the top of the bubble,
Ln, in the present numerical simulations with Eo ¼ 87 and Mo ¼ 1:4� 10�11. There is one set of
numerical results and three additional sets of experimental data also shown. These data were
taken from Anglart (2001) for Eo ¼ 30 and Mo ¼ 1:4� 10�11, DeJesus et al. (1995) for Eo ¼ 194
and Mo ¼ 2:9� 10�9, Kawaji et al. (1996) for Eo ¼ 232 and Mo ¼ 3:06� 10�9, and Mao and
Dukler (1991) for Eo ¼ 337 and Mo ¼ 2:5� 10�12. The present numerical results fall well within
the existing experimental and numerical data.



+++++
++++++++++++++ +++++++++++++ + +++ + + ++++ +++++++++

+++++
++++++++++++++ +++++++++++++ + +++ + + ++++ +++++++++

δ* =δ/R

L n*   =
 L

n
/R

0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

5

6

Present computation (long bubble)
Present computation (short bubble)
Cal.(VOF), Henryk Anglart (2001)
Experiments, DeJesus et al. (1995)
Experiments, M. Kawaji et al. (1997)
Experiments, Mao & Duckler (1991)+

Fig. 4. Comparison of the computed film thickness d� with experimental data.
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The theoretical rise velocity of a Taylor bubble in quiescent liquid inside a closed pipe of
diameter D is given by
UTB ¼ Fr
ffiffiffiffiffiffi
gD

p
; ð26Þ
where Fr ¼ 0:34–0:36. The present numerical results gave a Taylor bubble rise velocity of 0.158 m/
s ðFr ¼ 0:317Þ. Therefore, the rise velocity was underpredicted, but it was within 10% of the
theoretical value given by Eq. (26).

Detailed representations of the predicted velocity fields for long and short bubbles are shown in
Fig. 5(a) and (b). These figures show the velocity vectors and lines of constant stream function for
liquid and gas phases, including axial liquid velocity component profiles at various axial locations.
The velocity fields indicated the expected characteristics. Since these were both inertia-dominated
flows (Fr > 0:05, Eo > 70 and Nf > 550, guidelines developed by White and Beardmore, 1962), the
axial velocity profile in the film was nearly flat. However, it did increase with the axial position,
resulting in a continuously thinning film all the way to the trailing edge. A recirculation zone was
apparent in the wake region of the Taylor bubble for both cases. This zone was driven by the
relatively high velocity wall jet penetrating the region below the bubble.

Fig. 6 shows the computed radially averaged film velocity for Eo ¼ 87 and Mo ¼ 1:4� 10�11.
The result was compared to the experimental work of DeJesus et al. (1995), which provided
detailed velocity measurements around a rising Taylor bubble for Eo ¼ 100 andMo ¼ 1:0� 10�12.
Both cases were in the regime where the surface tension forces ðEo > 70Þ and viscosity ðNf > 550Þ
were negligible (see White and Beardmore, 1962).
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Fig. 6. Computed average film velocity vm for Eo ¼ 87, Mo ¼ 1:4� 10�11 and Fr ¼ 0:317, compared to experimental
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Fig. 5. Detailed velocity field information for Eo ¼ 87, Mo ¼ 1:4� 10�11 and Fr ¼ 0:317. The plots at the right give the
axial velocity components. The left half of the contour plot shows lines of constant stream function while the right half

shows velocity vectors: (a) long bubble, (b) short bubble.
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The numerically predicted Taylor bubble shapes and liquid-phase velocity distributions for
both the long and short bubbles agreed well with the available data. These data were used to
perform the signal prediction and calibration tasks for the current-sensing electromagnetic
flowmeter in the next section.
3.2. Numerical computation of the virtual potential

3.2.1. Numerical method

The Taylor bubble shapes obtained numerically in the previous section were used to assess the
flowmeter output when measuring slug flow. In this study, the two-dimensional axisymmetric
Taylor bubble shapes were rotated about the axisymmetric axis (see Fig. 2) to generate three-
dimensional bubbles. Although the small bubbles that are typically trapped between two Taylor
bubbles in a slug flow are roughly spherical, the unrealistic small bubbles in the wake of the
Taylor bubble (see Fig. 5(a)) were toroid in light of the assumed axial symmetry in the two-
dimensional slug flow. In this work, therefore, the small bubbles were regarded as toroids revolved
about the axis of symmetry. To solve the introduced virtual problem, the governing equation for
the virtual potential G can be written in cylindrical coordinates as
r2G ¼ 1

r
o

or
r
o

or
Gþ 1

r2
o2

oh2
Gþ o2

oz2
G ¼ 0 ð27Þ
for the computational domain shown in Fig. 7, where L is the axial length of the computational
domain, Lb is the length of the slug bubble, Le is the length of the square electrode for the
computation, Ln is the nose location of the slug bubble, Lt is the tail location of the slug bubble
and Lz is the half of the effective window.

The homogeneous Neumann condition was used at the boundary in the axial ðzÞ-direction,
since an infinite domain was assumed and current cannot pass through the end planes. When the
size of flowmeter window around the electrode L�

z ¼ Lz=R is greater than 4, it is sufficient to
perform the computations without considering the end effects for annular flow provided
d� ¼ d=R ¼ 0:05 to 1.0 (see Ahn et al., 2003a). In this computation, the axial extent
L�ðL=R ¼ 14:96) was determined to provide a sufficiently large domain that would not disturb the
results, considering the positions of the various electrodes. In the azimuthal ðhÞ direction, the skew
symmetric condition (see Fig. 7) was applied at the boundaries, as the two electrodes were located
at mutually symmetric locations. Therefore, the computational domain was composed of only
half of the cylinder, and the homogeneous Dirichlet condition was imposed at the center plane
(with respect to the electrodes). In the radial ðrÞ direction, a step-like distribution was used at the
electrodes and a homogeneous Neumann condition was used at remaining locations along the
pipe wall. The electrode was square and Le=R ¼ 1=6:35 in size. The boundary conditions can be
summarized as follows:
oG
oz

¼ 0 at z ¼ upper and lower end planes; ð28Þ

G ¼ 0 at h ¼ 0 and h ¼ p; ð29Þ



Fig. 7. Schematic diagram of the computational domain for the three-dimensional virtual potential.
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oG
or

¼ Eðh; zÞ at r ¼ R; on the electrode; ð30Þ

oG
or

¼ 0 at r ¼ R; otherwise; ð31Þ

oG
or

¼ 0 at r ¼ interface: ð32Þ
To solve the described three-dimensional virtual problem, numerical computations were per-
formed using the CFD-ACE+ code (CFD Research Corporation, version 2002.2.24) because of
the complex geometries involved. A finite volume method was used to solve the governing
equation. A blending scheme (10% of the first-order upwind scheme plus 90% of a higher-order
scheme) was used for the spatial discretization to provide for a stable and accurate numerical
analysis. When the residual of G was less than the given criterion (10�10 in the present compu-
tation), G was considered to be converged.

The grid was located outside the bubble region, and a tetrahedral mesh was used in these
simulations. The grid dependence was tested by doubling the total number of grid points for each
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case (0.5 · 106 points and 1.0· 106 points). The difference between the maximum potential value
obtained using each grid was less than 0.2%. Therefore the simulations were performed with
0.5 · 106 points.

The solutions depended only on the electrode shape, once the overall geometry and the mag-
nitude of the current on the electrodes were determined. In previous two-dimensional simulations
(Zhang, 1997), the electrode was assumed to be a point so that the delta function could be used for
the boundary condition. However, a point electrode cannot be used to compute the virtual current
with the present finite volume method. Therefore, we simulated an area-electrode with a small
finite size. Since the physical extents of the electrode were just about 5.0% and 1.05% of the
circumferential and the axial dimensions ðL=R ¼ 14:96Þ of the computation domain, respectively
(see Fig. 7), a large number of grid points were required to resolve the stiff potential field near the
electrode. To alleviate this problem, a dense grid was located near the wall (or the electrode).

The current on the electrode could not have a step increment because of the finite nature of the
numerical method. If a finite increment were to be imposed as the boundary condition, the grid
size dependency of the solution would become dominating as the increment increased. To resolve
this problem, the boundary current was smoothed. The ideal method of smoothing uses a unitary
function, whose Fourier transform has a value only at the zero wave number (Lighthill, 1980).
Unitary functions, however, consist of improper integrals and cannot be easily implemented.
Therefore, a polynomial curve fit was used, which smoothed the profile of the current up to the
first-order derivatives. It can be represented by
EðzÞLe ¼

0 for �z6 � Le
2
� b;

� 1

4b3
�zþ Le

2

� �3

þ 3
4b �zþ Le

2

� �
þ 1

2
for � Le

2
� b6�z6 � Le

2
þ b;

1 for � Le
2
þ b6�z6 Le

2
� b;

1

4b3
�z� Le

2

� �3

� 3
4b �z� Le

2

� �
þ 1

2
for Le

2
� b6�z6 Le

2
þ b;

0 for �zP Le
2
þ b;

8>>>>>>>><
>>>>>>>>:

ð33Þ
where b is the diffusion parameter, which determines the fitting length, and �z ¼ zþ Lz
2
. EðhÞ can be

constructed in a similar manner. The product of EðhÞ and EðzÞ was used as the boundary con-
dition for Eðh; zÞ (see Eq. (30)). The effect of the diffusion parameter was tested for b ¼ 0:04
(about 25% of the length of the electrode), b ¼ 0:08, and b ¼ 0. The potential value at the center
of the electrode differed by less than 0.5%, regardless of the value of b. In the present study,
b ¼ 0:04.

The total numerical accuracy can be estimated from the error obtained by integrating the
virtual current on the symmetric plane using the continuity of the virtual current (see Fig. 7):
R
Z Lz

0

Z p

0

Eðh; zÞdhdz
���� �

Z Z
oG
oy h¼0

dzdr

����
�

þ
Z Z

oG
oy

����
h¼p

dzdr
�����: ð34Þ
In this study, the errors appeared to be less than 10�8 for all of the computations.

3.2.2. Numerical results and discussions
The virtual potential and previous velocity fields, which were computed on the different grid

systems, were interpolated into an orthogonal domain to calculate the weight functions and to
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predict the flowmeter signals. The target orthogonal domain had the same axial length as the
effective flowmeter window (see Fig. 7).

A tangent hyperbolic function (Thompson et al., 1985) was used to produce the grid in the
radial direction of the orthogonal domain. This function was modified to give a dense grid near
the wall (or the electrode),
Fig. 8
rðnÞ
R

¼ 1

ar
tanh

n
2
ln
1þ ar
1� ar

� �
; ð35Þ
where ar is the stretching parameter in the radial direction. As ar goes to 1, the grid becomes more
clustered towards the wall. In the axial and azimuthal directions, a different stretching function
was used,
. Contour plots of the normalized axial weight function Wzðr; zÞ=B (long bubble): contours are advanced by 0.1.



Fig. 9
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zð1Þ
Lz

¼ 1

2
1

�
� ln

1þ azð1� 21Þ
1� azð1� 21Þ ln

1þ az
1� az

� �
; ð36Þ

hðgÞ ¼ p
2

1

�
� ln

1þ ahð1� 2gÞ
1� ahð1� 2gÞ ln

1þ ah
1� ah

� �
; ð37Þ
where az and ah are the stretching parameters in the axial and azimuthal directions, respectively.
As az and ah go to 1, the grid becomes denser around the electrode placed at the center of the
orthogonal domain. The orthogonal domain was created with 50· 100 · 100 grid points in the
radial, azimuthal, and axial directions, respectively, ar ¼ 0:95, ah ¼ 0:9 and az ¼ 0:9, which were
the same parameters used by Ahn et al. (2003a). The inverse distance method was used for the
interpolation,
ud ¼
P

wsusP
ws

; ð38Þ
where ud and us are the values of the variables at the destination point and the source point,
respectively, ws is the weighting function defined as
ws ¼ d�3:5 ð39Þ
and d is the distance between the source point and the destination point.
Figs. 8 and 9 show the axial weight functions (see Eq. (10)) divided by the magnetic flux density

B for the long and short bubble cases, respectively. The axial weight functions varied with the
bubble position relative to the electrode position, which was represented by its nose position
L�
n ¼ Ln=R. The axial weight function was the azimuthal average of the y-component of the virtual

current density. A value 0.5 of the axial weight function was corresponding to 1.24% of the virtual
current density imposed at the electrode. For practical applications, sensitivity variations are to be
expected from the non-uniformity of the magnetic field. However, non-uniformities in regions
where the axial weight function is less than 0.5 do not affect the sensitivity (Bevir, 1970).
. Contour plots of the normalized axial weight function Wzðr; zÞ=B (short bubble): contours are advanced by 0.1.
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For single-phase flows (plot a in Figs. 8 or 9), the axial weight function was symmetric with
respect to z� ¼ z=R ¼ 2 (the electrode plane). Plots (b) to (i) in Fig. 8 and (b) to (g) in Fig. 9, which
correspond to a rising slug bubble, show an asymmetric distribution of the axial weight function.
When the axial weight function distributions for slug flows were compared to those obtained for
single-phase flows, the effective region over which the weight function had a significant value
changed with the bubble position. This was because the virtual current detoured towards the path
with the least resistance. As the region further behind the Taylor bubble tail moved closer to the
electrode, the axial weight function distributions approached the values obtained for the single-
phase case.

Figs. 10 and 11 show the radial weight functions (see Eq. (9)) divided by the magnetic flux
density B. The radial weight functions also varied with the nose position L�

n ¼ Ln=R. Half of the
radial weight function, or the azimuthal average of the z-component of the virtual current density,
was also 1.24% of the virtual current density imposed at the electrodes.
Fig. 10. Contour plots of the normalized radial weight function Wrðr; zÞ=B (long bubble): contours are advanced by 0.1.



Fig. 11. Contour plots of the normalized radial weight function Wrðr; zÞ=B (short bubble): contours are advanced by

0.1.
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For single-phase flows (plot a in Figs. 10 or 11), the distribution of the radial weight function
related to the z -component of the virtual current was anti-symmetric with respect to z� ¼ z=R ¼ 2
(the electrode plane). These plots show horizontal stagnant lines (zero lines) over which the radial
velocities do not contribute to the output signal. The radial weight function was more localized
around the electrode than the axial weight function, so the radial velocity in the region around the
pipe centerline did not have much effect. As the region further behind the Taylor bubble tail
moved closer to the electrode, distributions of the radial weight function also approached the
values obtained for the single-phase case, similar to the axial weight function.

The axial weight density function pðz�Þ in Eq. (16), the radially weighted axial velocity �vzðz�Þ in
Eq. (18), and the liquid mean velocity vmTPðz�Þ for rising slug bubbles are shown in Figs. 12 and 13
for the long and short bubble cases, respectively. The axial weight density functions were com-
pared to those obtained for single-phase flow ðL�

n ¼ �2:0Þ. The detouring of the virtual current
caused the axial weight density function to increase in the liquid slug and to decrease in the liquid
film as compared to the single-phase flow values. A change in the slope of pðz�Þ was evident at the
nose and tail of the Taylor bubble or the electrode. For the short bubble, there was a case where
the slope changed at three points (plot (b)) due to its short length, which indicated that both the
nose and tail of the Taylor bubble were within the effective flowmeter window. The slope change
was also due to the detouring of the virtual current.

The velocities used in Eqs. (15), (18) and (19) were obtained using the interpolation method
stated previously (Eqs. (38) and (39)). The velocity field obtained from the numerical simulation
(see Section 3.1) was interpolated onto an r � z structured plane (50 · 100 grid points for Nr and
Nz) of the aforementioned three-dimensional target domain. Figs. 12 and 13 show that the radially
weighted axial velocity �vzðz�Þ was slightly smaller (larger in absolute value) than the liquid mean
velocity vmTPðz�Þ in the liquid film, except around electrode ðz� ¼ 2Þ (see Figs. 12(b) and 13(b)).
This was due to the fact that the radial profile of the axial weight function far from the electrode
plane had a maximum value at the interface, but the position of the maximum value moved closer



Fig. 12. Axial weight density function and liquid mean velocity profiles (long bubble): ––, Pðz�Þ for slug flow cases; – – –

Pðz�Þ for single-phase flow case ðL�
n ¼ �2:0Þ; -�-�-�, �vzðz�Þ; � � �, vmTPðz�Þ, (E: electrode, T: tail, N: nose).

606 D.H. Kang et al. / International Journal of Multiphase Flow 30 (2004) 585–614
to the wall as it approached the plane. The difference between �vzðz�Þ and vmTPðz�Þ was within 2.5%
in the film (the rms value of the difference with respect to the maximum vmTP). However, �vzðz�Þ was
larger than vmTPðz�Þ in the wake zone, because the upward velocities around pipe axis were highly
weighted (see Figs. 5, 8 and 9).

A measure of the amount of detouring by the virtual current can be obtained from the pro-
portion of the axial weight density function for the liquid slug, gpðL�

nÞ, defined by
gp ¼
R
XS
pðz�Þdz�R1

�1 pðz�Þdz�
¼

Z
XS

pðz�Þdz�; ð40Þ
where XS is the liquid single-phase region. The relative proportion gpðL�
nÞ of the axial weight

density function for the liquid slug is shown in Fig. 14. Electromagnetic flowmeters have an



Fig. 13. Axial weight density function and liquid mean velocity profiles (short bubble): ––, Pðz�Þ for slug flow cases;

– – – Pðz�Þ for single-phase flow case ðL�
n ¼ �2:0Þ; -�-�-�, �vzðz�Þ; � � �, vmTPðz�Þ, (E: electrode, T: tail, N: nose).
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effective window size around the electrode. Therefore, the decreasing curves of gpðL�
nÞ were always

the same, because the flowmeter experienced the same situation each time and did not notice the
effect of the bubble length when identical-shaped noses were approaching the electrode. However,
for bubbles that were shorter than the effective window size, there was a departing point (at L�

n � 1
for the present short bubble) from the curve according to their length. The increasing pattern of
the gpðL�

nÞ curves was very similar, although there was a slight dependence on the void fraction at
the slug bubble tail and on the daughter bubbles. A similar procedure can be applied to the radial
weight function to obtain qðz�Þ in Eq. (17), �vrðz�Þ in Eq. (19), and the relative proportion of qðz�Þ
for the liquid slug (not shown here).
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A proper localization parameter v is required to avoid introducing errors in the time-averaged
liquid flow rate. Ahn et al. (2003b) modeled the localization parameter by approximating the
Taylor bubble as a stationary finite-cylinder and assuming that the liquid velocity field around the
bubble tail behaved as follows:
v ¼ ð0; 0; uÞ if z� > L�
t ;

ð0; 0; ð1� eÞuÞ if z� < L�
t ;

�
ð41Þ
where u is the uniform film velocity, e is the void fraction, and L�
t ¼ Lt=Rð0 < L�

t < L�
z Þ is the tail

location, as shown in Fig. 7. Ahn et al. (2003b) focused on the signal behavior around the tail of
Taylor bubbles that were larger than the effective window size. Using Eq. (15), their suggested
localization parameter was
v ¼
1

1�egP
if L�

t 6 L�
z=2

1�e
1�egP

if L�
t > L�

z=2:

(
ð42Þ
Fig. 15(a) and (b) depict the localization parameters calculated from Eq. (15) with or without the
radial velocity �vrðz�Þ, and by Eq. (42) with e at the tail, at various bubble locations for both long
and short bubbles, respectively. As the Taylor bubbles rose, the localization parameter for both
cases remained almost constant when L�

n 6 L�
b � L�

z=2, and increased to its peak value when the
exact trailing edge reached the electrode (L�

n ¼ 6:1 and 2.9 for the long and short bubbles,
respectively). Then the localization parameter abruptly fell in the liquid slug region. For single-
phase and annular flows with constant d� the localization parameter is unity (Ahn et al., 2003a).
However, for a slug flow with a continuously varying film thickness and accelerated developing
flow characteristics in the effective window, the localization parameter was above unity in the film,
i.e., by assuming v ¼ 1 in the decomposition method used by Mi (1998), a significant error in the
velocity estimate was inevitable, particularly around the tail. When compared to the v model used
by Ahn et al. (2003b), the present results gave larger v values. This is why the present results are
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more realistic: they consider the actual shape of the rising Taylor bubble, the increasing axial
speed in the liquid film, and the radial variation of the axial velocity in the wake zone. (The large
difference between vmTPðz�Þ and �vzðz�Þ in the wake zone contributes to the difference between the v
model and the present results.) For instance, the modeled v was unity when L�

z=26 L�
n 6 L�

b � L�
z=2

and the bubble was longer than the window size (i.e., when the cylinder bubble occupied the entire
effective window, which is the same situation that is encountered in annular flow). The present
results gave v almost equal to 1.3 because they considered the film thinning and, therefore, the
increasing axial speed in the liquid film. On the other hand, the peak value of v was smaller for a
long bubble than for a short bubble. This was mainly due to the faster rate of increase in the speed
of the liquid film in the effective window for the short bubble, as shown in Figs. 12(c) and 13(c).
Fig. 15 indicates that the radial velocity had little influence on the localization parameter, except
for lower values of L�

n (Lower values L
�
n indicate that the electrode was positioned near the bubble

nose, where there are relatively large radial velocities). If there is sufficient liquid superficial
velocity, the effect of the radial velocity around the nose will also be negligible.

The flow pattern coefficient f must be known in advance to calibrate a current-sensing flow-
meter. The coefficients shown in Figs. 16 and 17 can be obtained from the virtual potential
differences between the two electrodes. The coefficient f can be viewed as a function of the non-
dimensionalized film thickness d� at the electrode as well as the non-dimensionalized bubble nose
position L�

n for a rising slug bubble. Fig. 16 shows the flow pattern coefficient as a function of the
bubble location, L�

n. The coefficient f was almost unity when L�
n < 0 or L�

n > L�
b þ 0:5, which

indicated that the current-sensing flowmeter recognized this flow pattern as single-phase flow. The
increasing shape of each curve is always the same, for the same reason as given for the gpðL�

nÞ
curves. Bubbles that were shorter than the effective window size had a departing point (L�

n � 1 for
the present short bubble) from the curve according to their length. The decreasing pattern of the
curves was also very similar, although there was a slight dependence on the void fraction at
the slug bubble tail and on the daughter bubbles. The peak values were f ¼ 2:22 at L�

n ¼ 4:66 for



Ln=Ln/R
*

f  
   

G
TP

/  
G

SP

-2 0 2 4 6 8
1

1.3

1.6

1.9

2.2

2.5

Long bubble
Short bubble

nose

tail
∆

∆ =
  

  

Fig. 16. Flow pattern coefficient f as a function of the bubble location L�
n.

δ*=δ/R

0 0.2 0.4 0.6 0.8 10

1

2

3

4

Numerical Results, present computation
Experiments, Ahn et al. (2003a)
Numerical results, Ahn et al. (2003a)

Ln
*=4.66

δ*=δ/R

0 0.2 0.4 0.6 0.8 10

1

2

3

4

Numerical Results, present computation
Experiments, Ahn et al. (2003a)
Numerical results, Ahn et al. (2003a)

Ln
*=2.0

(a) (b) 

f  
   

G
TP

/  
G

SP
∆

∆ =
  

  

f  
   

G
TP

/  
G

SP
∆

∆ =
  

  

Fig. 17. Flow pattern coefficient f as a function of the non-dimensionalized film thickness d�: (a) long bubble, (b) short

bubble.

610 D.H. Kang et al. / International Journal of Multiphase Flow 30 (2004) 585–614
the long bubble, and f ¼ 1:53 at L�
n ¼ 2:0 for the short bubble. For bubbles longer than the

window size, the maximum value occurred when the bubble tail reached the lowest plane of the
effective window and the bubble occupied the entire window. For shorter bubbles, the maximum
value occurred after at least 50% of the bubble had passed the electrode (69% for the present short
bubble). Fig. 17(a) and (b) show the present predictions for both slug bubbles, along with the
experimental and numerical results for annular flows by Ahn et al. (2003a). These figures illustrate
the errors that are introduced when one simply uses the f value of the corresponding annular flow
instead of that of the slug flow. The peak values are at d� ¼ 0:079 for the long bubble and
d� ¼ 0:115 for the short bubble. When d� > 0:3, the flow pattern coefficients for the long and short
bubble cases are nearly 1.0, since the virtual potential decreases sharply with the distance from the
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electrode and the electrode potential cannot be disturbed by obstacles positioned near the pipe
center. Assuming that the slug flow behaves as an annular flow when d� > 0:3, the error in the
flow coefficient f is within 3% for both slug flow cases. When d� is greater than 0.079 for the long
bubble and greater than 0.115 for the short bubble, which correspond to the locations of the
peaks, the errors are within 7.4% and 4.8%, respectively. As d� decreases from the critical values
where the flow pattern coefficients reach their maximum values, the coefficients abruptly decrease.
This is due to the large virtual current that flows towards the liquid slug in the lower window, even
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though the electrode sees the thin liquid film. The deviation between the slug and annular flows
increases rapidly.

Figs. 18 and 19 give time series of the non-calibrated outputs and the liquid mean velocities on
the electrode plane, vmTP, for the current-sensing (Eq. (14)) and voltage-sensing (Eqs. (1) and (8))
flowmeters. For both types of flowmeters, a significant error will be included in the results if the
effect of the calibration parameter(s) is neglected. Therefore, it is very important to obtain the
localization parameter and the flow pattern coefficient, and to calibrate the flowmeter for each
flow pattern. To do so, information about the bubble position must be supplied using, for
example, an impedance meter. The slug flow experiment including the measurement of bubble
position will be carried out with the current-sensing flowmeter and two impedance meters. The
experimental result will be compared with this result and reported in the near future.
4. Conclusions

The theory of current-sensing flowmeters with high temporal resolution was applied to two-
phase slug flow with fast transients. The velocity fields and Taylor bubble shapes were computed
using the volume-of-fluid (VOF) model for long and short bubbles (Eo ¼ 87 and
Mo ¼ 1:4� 10�11) to simulate the response of conventional voltage-sensing and current-sensing
flowmeters in a slug flow. These results were compared to existing experimental and analytical
data and had a good agreement. The three-dimensional virtual potential distributions for small
finite electrodes were also computed with a finite volume method using the computed bubble
shape. The axial weight, axial weight density, and radial weight functions were defined and
computed from the gradient of the virtual potential, which corresponded to the velocity contri-
bution to the flowmeter output at each position. A time series of the flowmeter output was
predicted for both types of flowmeter.

A calibration procedure for both types of flowmeter was described. A localization parameter v
was introduced to remove the error caused by rapidly accelerating and decelerating flows, such as
with a slug flow. The localization parameter was provided for both types of flowmeter as a
function of the normalized bubble nose position, L�

n, relative to the electrode position. The
localization parameter was almost constant (�1.3) when L�

n 6 L�
b � L�

z=2, provided that the bubble
was longer than the effective window size ðL�

z ¼ 4Þ of the flowmeter. The peak value of v occurred
at the bubble tail because of detouring by the virtual current and the abrupt change in the axial
liquid velocity. The radial velocity had little effect on v. The flow pattern coefficient f was cal-
culated and provided to simplify the calibration process for current-sensing flowmeters. The value
of f for the slug flow was almost unity when d� > 0:3 or L�

n < 0 or L�
n > L�

b þ 0:5. Before the wake
region started to occupy the effective window or the flow pattern coefficient f reached its maxi-
mum value, the slug flow could be treated as an annular flow to determine f with only a 7.4% or
4.8% error for the long and short bubbles, respectively.

The non-calibrated velocities or normalized outputs were compared to the actual liquid
velocities for both types of flowmeter to demonstrate the significance of the errors that were
introduced by neglecting the localization parameter and/or the flow pattern coefficient. Once a
flowmeter signal is obtained experimentally, these calibration parameters will prove useful when
calculating an accurate liquid mean velocity for slug flow.
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